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NUMERICAL ACOUSTIC HULL ARRAY OPTIMIZATION 

1. INTRODUCTION 

Traditional approaches to acoustic hull array design have focused on the optimization of 

desirable beam pattern properties such as the maximization of array gain or the minimization of 

sidelobe levels (references 1-3). Unfortunately, such traditional design approaches are applicable 

at only a single frequency. In general, the fundamental design goal for a passive acoustic hull 

array is an optimal broadband detection capability. To achieve this goal, an optimal hull array 

design procedure based on a broadband-detection criterion is required. 

A revolutionary approach to large-scale submarine acoustic hull array design that focuses 

on the optimization of the beamformer response has recently been developed by Streit and 

Wettergren (reference 4). This approach is based upon maximizing the deflection coefficient of 

a classical square-law detector under the assumption of a small signal-to-noise ratio (SNR). 

Streit and Wettergren have derived an expression for the variance of the output of a square-law 

detector whose input is the beamformer output. The noise-only output variance (of the detector) 

is the theoretical basis of the objective function, which is appropriate for either correlated or 

uncorrelated noise sources that can be distributed either discretely or over a continuum. This 

objective function accounts for noise sources, beamforming effects, and structural-acoustic 

energy transfer of offending disturbances. (The theoretical development of the objective 

function and its gradient are given in reference 4.) 

In this report, the optimal hull array design approach of Streit and Wettergren is applied 

to obtain the optimum element weight distributions for several line arrays. Although Streit and 

Wettergren have formulated the optimization problem to address single-beam as well as 

multiple-beam designs, only single-beam designs are considered. In the examples described 

here, only point sources of noise are considered. In the case of several noise sources, the 

excitations are assumed to be uncorrelated. In contrast, the responses of the array hydrophones 

are generally correlated with respect to each other. The power spectra of the noise sources 

considered are assumed to be uniform over each frequency band of interest. The results are 

obtained for arrays that are conformal with an air-filled, fluid-loaded spherical elastic shell. A 

spherical shell is used here because analytical expressions exist for the velocity and pressure 

fields (references 5-6). 



A nonlinear optimization algorithm is applied to obtain numerical results for the optimal 

hull array design. Results are obtained for line arrays that operate over both low- and high- 

frequency bands, which correspond to element spacings of a small fraction of a wavelength and 

one-quarter to one-half of a wavelength, respectively. In addition, the noise-only beamformer 

output spectra are plotted and compared for optimum, uniform, and cosine-tapered weights. 



2. DESCRIPTION OF OPTIMIZATION PROBLEM 

Consider a hull array consisting of M hydrophones that are steered to receive an incoming 

plane wave in the direction described by the unit vector |z. Under low SNR conditions, the 

deflection coefficient d for the beam steered in the look direction §t is directly proportional to 

the ratio of the total signal power in that beam to the standard deviation of the square-law 

detector output waveform (under the noise-only hypothesis) (reference 4). Under the 

assumptions that §l is exactly the signal-arrival direction, that the incoming plane wave excites 

only the hydrophones and not the hull, and that the angular response of each hydrophone is 

omnidirectional with a flat spectral response, Streit and Wettergren (reference 4) have shown that 

the optimum deflection coefficient is found by solving the following minimization problem: 

f 
J.fn 

"/max 

™nM| V2(f;*,$l df, (1) 
/min 

subject to the linear equality constraint 

M 

Jvl- (2) 
m = 1 

and the non-negative constraint on the hydrophone weights 

wm>0, m=l,2,...,M. (3) 

In equation (l),/is the frequency in Hertz (Hz), the frequency band/m(n <f<fmax denotes 

the bandwidth of the receiver, w = [wv w2, —, w^T *s ^e c°lumn vector of element 

(hydrophone) weights, and V denotes the (noise only) beamformer output spectrum. The 

objective function in equation (1) is proportional to the variance of the output of the square-law 

detector under the noise-only hypothesis. It should be noted that equation (1) is a modification 

of the objective function derived by Streit and Wettergren (reference 4) and is more suitable for 

obtaining numerical results. The derivation of equation (1) from the original objective function 

in reference 4 is given in appendix A. Formulas for the components of the gradient of the 

objective function are also given in appendix A. 

The optimization problem involves a nonlinear objective function subject to a linear 

equality constraint. The unknown real variables in equation (1) are the M hydrophone weights 



wm, m=\,2,..., M, expressed in terms of an M-dimensional real vector w. Numerical results 

for the optimization model are obtained through use of the nonlinear programming algorithm 

NPSOL developed at Stanford University (reference 7). NPSOL uses a sequential quadratic 

programming (SQP) algorithm in which the search direction is the solution of a quadratic 

programming (QP) subproblem. SQP algorithms are generally superior to gradient descent 

methods because they exhibit a higher rate of convergence in the vicinity of the solution 

(references 8 and 9). In addition, an SQP algorithm is well suited to this application because the 

objective function is quartic in the element weights. NPSOL has been successfully applied in the 

beam pattern optimization of conformal antenna arrays (reference 10). 

A FORTRAN 77 driver program was written to apply NPSOL to the acoustic hull 

array optimization problem. For a given array, the driver program reads in the array element 

coordinates and the spectral Green's function (or transfer function) associated with a given noise 

source at various frequencies across the band of interest. The driver program then calls NPSOL, 

resulting in an optimum set of weights. The optimization results are validated by checking them 

for various starting points. In the present optimization problem, the objective function and its 

gradient are evaluated via numerical integration. The method of overlapping parabolas 

integration rule (reference 11) is applied here in order to perform the integration in the case 

where the spectral Green's functions are obtained at unequally spaced frequencies. A derivation 

of the overlapping parabolas integration rule is given in appendix B. A comparison of the 

performance of the overlapping parabolas rule with the trapezoidal and Simpson's rules is also 

given in appendix B. 



3. POINT-EXCITED, FLUID-LOADED SPHERICAL SHELL 

This report considers an air-filled, fluid-loaded spherical elastic shell of radius a and shell 

thickness h as shown in figure 1. The sphere is excited by a time-harmonic point force located at 

the north pole of the sphere. For the examples considered in this report, the diameter of the 

sphere is 15 ft {a = 7.5 ft = 2.286 m) and the shell thickness to radius ratio hla is 0.011. The 

spherical geometry was chosen because analytical formulas can be derived for the velocity and 

pressure fields. Two array examples are examined here, i.e., a line array centered at the antipode 

(0= 180°), as shown in figure 2a, and a line array centered at 0= 140°, as shown in figure 2b. 

Spherical 
Shell 

Figure 1. Point-Excited, Air-Filled, Spherical Elastic Shell in a Fluid 

A set of MATLAB® programs has been written by Professor Peter Stepanishen of the 

University of Rhode Island to compute the velocity and pressure fields for an in-vacuo, or fluid- 

loaded, spherical elastic shell (air filled) that is excited by a time-harmonic point force located at 

the north pole of the shell (figure 1) (reference 6). Of particular importance to the beamformer 
optimization code (used to generate the results presented in this report) is the pressure field along 

the surface of the elastic shell. The transfer function H(f; pm, qk, t,k), which is defined in 

appendix A, is the surface pressure at a pointpm on the shell surface that is produced by a time- 

harmonic (at a frequency/) point force located at a point qk on the surface of the shell and 

oriented along the t,k direction. 



No. 6 No. 3 

Figure 2a. Eleven-Element Line Array Centered at the South Pole (6 = 180°) of Sphere 

No. 6 

No. 11 

Figure 2b. Eleven-Element Line Array Centered at 6 -140° 



Stepanishen's MATLAB programs were developed for two purposes, i.e., to provide 

results for the validation of a finite-element code that is required for producing transfer functions 

for a more general geometry and to generate the transfer functions needed for the optimization 

results presented in this report. The MATLAB programs implement some analytical formulas 

for the structural-acoustic velocity and pressure fields that are expressed in terms of 

eigenfunction expansions. 

The analytical formulas for the velocity field of the shell and the corresponding pressure 

field that are implemented in the MATLAB programs were derived by Stepanishen and 

Wettergren (reference 6). These formulas result from the solutions of the equations of motion 

for the shell. The normalized equations of motion for the shell, when immersed in a fluid, can be 

expressed as (reference 6) 

(4) ^11 ^12 
L21 L22 

" U(x) 
W(x) -Q2 " U(x)" 

W(x) 
_ a 
~ h 

Fu(x) 
Fw{x) 

a 
h 

0 
P(x) 

where x = x(a, 9) denotes a point on the middle surface of the spherical shell and 6 denotes the 

polar angle in spherical coordinates. The terms Lmn denote partial differential operators in 

spherical coordinates while U(x) and W(x) represent the in-plane and normal displacements, 

respectively, of the middle surface of the shell. A steady-state time-harmonic field dependence 

elilt has been assumed in equation (4), where Q, = 27ifalcp is the normalized frequency, c_ is the 

speed of sound in the shell, and i = v^-T. The force density terms Fu{x) and Fw(x) in equation (4) 

represent the mechanical excitations on the shell while P(x) denotes the acoustic pressure that 

acts on the shell as a result of the nonzero normal velocity of the shell. 

For a point-force excitation at 8= 0 (figure 1), the force density terms in equation (4) are 

F'ix) = 0 , 

Fw(x) = 
F0ö(d) 
2n sin 6 

(5a) 

(5b) 

where F0 denotes the amplitude of the force and £ denotes the Dirac delta function. Substituting 

the excitations (5a) and (5b) into equation (4), Stepanishen and Wettergren have shown 

(reference 6) that the surface pressure can be expressed as 

p. N    ■ Poco V (2» + l)/2 p,      m hs{Qc lc0) 
PP

C
PS = O  Z*?+Zr hs(Qcp/c0) 

(6) 



where p0 and pp denote the densities of air and the shell, respectively, c0 is the speed of sound in 

air, Z„ is the modal radiation impedance, Zf* is the total modal mechanical impedance, Ps is the 

Legendre polynomial of order s, and hs and h's are the spherical Hankel function (of the first or 

second kind) and its derivative, respectively. Formulas for Zn and Zff are given in reference 6. 

Stepanishen and Wettergren have shown that their formulas are equivalent to the existing 

classical formulas given in Junger and Feit (reference 5). 

Expression (6) neglects structural damping. Without structural damping, the denominator 

of equation (5) will vanish at each resonant frequency Qc, resulting in an unrealistic infinite 

surface pressure. Small losses can be accounted for through the multiplication of the speed of 

sound in the shell cp by 1 + irjs, where rjs represents the structural damping or loss factor, with 

J]s « 1 (reference 5). The effect of the replacement of cp by cp{\ + iT]s) in equation (6) is the 

removal of resonant frequencies from the real frequency axis and, thus, remove the singularities 

from the pressure field. According to Stepanishen (reference 12), typical values for the structural 

damping factor range from 0.01 to 0.1. 

The effect of structural damping on the integrand of the objective function V2(f;w, f,) 

over two different frequency bands is shown in figures 3a and 3b . In these plots, V2(f; w, |;) 

was computed for the line array described in figure 2a with uniform weights and a beam steered 

at the look angle 6l = 180°. Figure 3a shows the integrand plot over the low-frequency band 

(250 Hz </< 1000 Hz) while figure 3b applies to the high-frequency band (1723 Hz </< 3446 

Hz). The plots indicate the existence of numerous resonances across both frequency bands. 

Attempts to evaluate the objective function over either frequency band with no structural 

damping did not produce a convergent result. The plots show that for very small damping 

(T]s = 0.01) the resonances are attenuated significantly. Most of the resonant peaks are removed 

from V2(f;w, f,) for a structural damping factor of 0.05. This damping factor will be used in the 

examples that follow, because the integrand plots over both frequency bands are fairly smooth. 

Expression (6) involves an infinite summation over the various modes of the spherical 

elastic shell. Stepanishen and Wettergren (reference 6) have determined that 150 modes (terms 

in the summation) are more than sufficient for convergence of the velocity and pressure fields 

over the frequency bands of interest. 
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4. OPTIMIZATION RESULTS 

The 11-element line array considered here is conformal to the surface of the 15-ft 

diameter air-filled, fluid-loaded spherical shell described in figure 1. The array elements are 

equally spaced and extend across a 60° arc along the sphere. For computational convenience, the 

array is placed along the xz-plane. As previously stated, two cases are considered in this report: 

the line array centered at the antipode (0= 180°) as shown in figure 2a and the line array 

centered at 0 = 140° as shown in figure 2b. The 0= 140° case was chosen because the array has 

no element located at the antipode. In each example, the spherical shell has a time-harmonic 

point force (noise source) located at 0= 0°. 

The optimization of each array is performed over two different frequency bands. Over 

the low-frequency band of 250 Hz </< 1000 Hz, the spacing s between elements is 0.036A < s 

< 0.145/1, where A is the acoustic wavelength in the fluid. The speed of sound in the fluid is 

1500 m/s. The high-frequency band of 1723 Hz </< 3446 Hz was chosen so that the element 

spacing is Al A <s< All. In each example considered, the optimum weight distribution will be 

plotted along with the corresponding noise-only beamformer output spectrum. 

4.1 EXAMPLES FOR LOW-FREQUENCY BAND (250 Hz </< 1000 Hz) 

In considering the 11-element line array centered at 0= 180° with a time-harmonic point 

force located at 0= 0°, it is noted that the resulting transfer function magnitude plots at the 

locations of elements 1 to 3 and elements 4 to 6, are shown in figures 4a and 4b, respectively. 

Because the transfer function is axisymmetric for a point source located at 0= 0°, the transfer 

functions for elements 7 to 11 are not plotted. Of particular importance in figures 4a and 4b is 

that the transfer function at the center element (no. 6) is noticeably larger than at the other 

element locations across most of the frequency band. This peculiarity is attributed to the fact 

that it lies at the antipodal point with respect to the source, which will have a noticeable impact 

on the optimization results as described below. 

Figure 5 a is a bar graph of the optimum weight distribution for the line array in figure 2a 

for a beam steered at the look angle 0= 180°. The weight distribution is unusual because the 

minimum weight is at the center element. This can be attributed to the large transfer function 

magnitude at the center element location over most of the frequency band. Because the objective 

11 



function and gradient terms are on the order of 103 for the optimization of the line arrays in 

figures. 2a and 2b, they are each multiplied by 10 3 in the optimization program so that they are 

on the order of unity. This scaling of the objective function has no impact on the optimum 

solution; it only improves the numerical convergence. It should also be noted that the scaling 

factor for the objective function varies with each example. 

The weight distribution in figure 5a is symmetric with respect to the center element. This 

same result was obtained for several feasible starting points (i.e., initial weight distributions that 

lie in the allowable domain as defined in equations (2) and (3)). However, it was observed that 

some infeasible starting points resulted in the same optimum objective value but different 

optimum weight distributions than the one in figure 5a. The reason for this peculiarity is that 

the transfer function and the array are each symmetric with respect to the beam-steering angle 

01 = 180°. Consequently, the same objective function value is obtained for different element 

weight distributions such that the sums of the weights of opposing elements with respect to the 

center element are the same. This can be expressed mathematically as 

wn + wl2-n = cn>  " = 1, 2, 3, 4, 5. (7) 

In equation (7), the cn's are constants. If the weights are further constrained to be symmetric 

with respect to the center element, the optimum distribution in figure 5a will be obtained for both 

feasible and infeasible starting points. 

Figure 5b is the optimum weight distribution for the line array in figure 2a for a beam 

steered at the look angle 0l = 150°. The weight distribution still has a minimum at the center 

element, but it is asymmetrical with respect to the array center. Note that relatively larger 

weights are on the side of the array in which the beam is steered, as expected. The same 

optimum weight distribution was obtained for both feasible and infeasible starting points. 

Figure 6 shows the line array centered at 0 = 180° with three time-harmonic point forces 

that are each diametrically opposite with respect to one of the three center elements (numbers 5 

to 7). Note that the three forces are in phase and of equal amplitude. The purpose of this 

exercise is to see if the optimum weights produced at element numbers 5 and 7 are significantly 

reduced from those in figures 5a and 5b. Figures 7a and 7b illustrate the optimum weight 

distributions for beams steered at the look angles 0{ = 180° and 6t = 150°, respectively. The 

graphs show the expected results, i.e, that any element that is located at an antipodal point with 

respect to a point source will have a small optimum weight. 

12 
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As previously mentioned, the beamformer optimization applied here is based on the 

maximization of the deflection coefficient of a square-law detector. Therefore, to describe the 

array performance, the signal-only angular response (beam pattern) of the array at particular 

frequencies over the band of interest is not suitable. Instead, the array performance is described 

in terms of the noise-only beamformer output spectrum V(f). An expression for the noise-only 

beamformer output spectrum associated with K point-force excitations is given in appendix A in 

terms of the angular frequency co and is rewritten in terms of the frequency/in Hertz as 

V{f;w,§j) 2 
A-=l 

W) 
M 

2 Wm HV> Pm- 4k> £*) eXP 
.2nf 

X~T\Vn (8) 

where Nk(f) denotes the power spectrum of point source k,pm is the position vector of 

hydrophone m, c is the speed of sound, and H(f;pm, qk, t,k) is the transfer function (spectral 

Green's function) relating a point force located at qk and oriented along the t,k -direction with 

the response measured atpOT. Note that (pm • |z )/c is the time delay for hydrophone m for a 

plane wave arrival from direction |;. The unit vector f, in the beam-steering direction is 

expressed mathematically as 

§i = x sin 6j cos cp, + y sin 6l sin cp, + z cos 8l, (9) 

where x, y, and z denote unit vectors along the JC-, y-, and z-directions, respectively, and 6t and 

% denote the polar and azimuthal angles, respectively, of the beam-look direction. (The reader 

is referred to the coordinate system described in figure 1.) In the examples described in this 

report, the power spectrum Nk(f) of each noise source is assumed to be unity across the frequency 

band of interest. 

Figures 8a and 8b show plots of the noise-only beamformer output spectra for the line 

array described in figure 2a as a function of frequency over the low-frequency band for beams 

steered in the look-directions 6l = 180° and 6l = 150°, respectively. In each of these figures, the 

beamformer output spectra are plotted for optimum, uniform, and cosine-tapered weights. In 

each case, the weights sum to unity (i.e., equation (2) is satisfied). For the array in figure 2a, the 

cosine-tapered weights are given as 

wm = bcos[3(dm-x)],    ^<6m<^,   /;/=!, 2, 11 (10) 
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where the normalization constant b is chosen so that the weights sum to unity. The plots in 

figures 8a and 8b show that the optimum weights produce a significant improvement in the 

beamformer output across the entire frequency band of interest. The plots also indicate that the 

optimum weights result in an improvement of almost two orders of magnitude in the beamformer 

output spectrum over the uniform and cosine-tapered weights across much of the frequency band 

plotted. This significant improvement will likewise produce an almost two orders of magnitude 

improvement in the deflection coefficient. In contrast, the beam patterns for the various weights 

would not necessarily show an improvement for the optimum weights. 

Figures 9a and 9b show plots of the noise-only beamformer output spectra for the line 

array with three noise sources (as described in figure 6) as a function of frequency over the low- 

frequency band for beams steered in the look-directions &i = 180° and 0; = 150°, respectively. 

The plots indicate a similar improvement in the beamformer output spectrum for the optimum 

weights over the uniform and cosine-tapered weights. Note that the beamformer output spectrum 

for each weight distribution is larger than the corresponding one plotted in figures 8a and 8b 

because there are three times as many noise sources (i.e., K = 3 versus K = 1 in equation (8)). 

As shown by Streit and Wettergren (reference 4), the deflection coefficient d for the 

beam steered in the look-direction f l is inversely proportional to the standard deviation of the 

square-law detector output waveform under low SNR conditions, i.e., 

d cc   1 , (11) 

-Tnax 
'2/ 

•'min 

where the proportionality constant is the signal power S. In the above expression, note that the 

integral under the square root is the objective function F(w) for the optimization problem. For a 

given weight distribution w and beam-steering-direction §t, the deflection coefficient index dn is 

defined as 

dn =  , S . (12) 
Jvr ■'max 

T2( I Vz(f^i) df 
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Because the deflection coefficient is proportional to the SNR at the output of a square- 

law detector, the difference in deflection coefficient indices for two different weight distributions 

provides a measure of the difference in the corresponding SNRs at the detector output for a given 

array. The optimum weight distribution will produce the minimum value for the objective 

function and will result in the maximum deflection coefficient index. 

The SNR improvement with respect to uniform weights ASNRU is defined as 

ASNRU= d\     -d„\      . (13) 11 "\opt "\umf v     ' 

where the subscripts opt and unif refer to the optimum and uniform weight distributions, 

respectively. Similarly, the SNR improvement with respect to cosine-tapered weights ASNRC is 

defined as 

ASNRC= d\     -d\     , (14) 
1 " 'opt " I COS 

where the subscript cos refers to the cosine-tapered weight distribution. The SNR improvements 

above are given in decibels (dB) as 

ASNRU dB= 10 log lQ(ASNRu), (15a) 

and 

ASNRC dB= 10 logl0(ASNRc). (15b) 

Table 1 presents the objective function for the optimum, uniform, and cosine-tapered 

weights and the SNR improvements with respect to the uniform and cosine-tapered weights for 

the low-frequency band examples presented in this report. Particular attention should be made to 

the first four array examples in the table as these correspond to the results shown in figures 5, 7, 

8, and 9. The examples corresponding to the arrays illustrated in figures 2a and 6 show that the 

optimum weights produce a 22- to 42-dB improvement in the SNR as compared with the 

conventional uniform and cosine-tapered weight distributions. The significant improvement in 

the SNR is not surprising considering the beamformer output spectra plots in figures 8 and 9. 
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Table 1. Objective Function F(w)for Several Weight Distributions and SNR 
Improvements (ASNR) in the Low-Frequency Band Examples 

Array Beam Steering 
Angle (deg) 

Weight 
Distribution 

Objective 
Function 

ASNR (dB) 

Figure 2a 180 Optimum 3.536 x 103 - 

Uniform 1.796 xlO6 27.1 
Cosine Taper 8.413 x 106 33.8 

Figure 2a 150 Optimum 6.008 x 102 - 

Uniform 1.472 xlO6 33.9 
Cosine Taper 8.606 x 106 41.6 

Figure 6 180 Optimum 6.629 x 105 - 

Uniform 1.207 xlO8 22.6 
Cosine Taper 6.141 x 108 29.7 

Figure 6 150 Optimum 2.189 xlO5 - 

Uniform 1.070 xlO8 26.9 
Cosine Taper 5.617 xlO8 34.1 

Figure 2b 140 Optimum 2.442 x 102 - 

Uniform 8.055 x 103 15.2 
Cosine Taper 4.289 x 102 2.45 

Figure 2b 170 Optimum 2.551 x 102 - 

Uniform 6.649 x 103 14.2 
Cosine Taper 4.371 x 102 2.34 

Figure 2b* 140 Optimum 5.004 x 102 - 

Uniform 3.575 x 104 18.5 
Cosine Taper 9.025 x 103 12.6 

*Denotes removal of elements 8 and 9. 

Figure 10a illustrates the optimum element weights for the line array in figure 2b for a 

beam steered at the look angle 6t = 140°. The weight distribution is tapered with the maximum 

weights near the center of the array and the weights dropping off considerably at the ends. A 

comparison of the weights for elements on opposite sides of the array (with respect to the center 

element) shows that the larger weights are on the side of the array nearest to the source. Figure 

10b shows the optimum weights for the same line array with a beam-steering angle of 6l = 170°. 

In this example, the weight distribution is more symmetrical than in figure 10b with a maximum 
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value at the center element. The optimum distributions in figures 10a and 10b are quite stable as 

the same results were obtained for several feasible and infeasible starting points. 
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Figure 10. Optimum Weight Distributions for the 11-Element Line Array Described in 
Figure 2b over the Low-Frequency Band (250 Hz <f< 1000 Hz) 

for Beam-Steering Angles (a) 0, = 140° and (b) 6l = 170° 
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Figures 11a and lib show plots of the noise-only beamformer output spectra for the line 

array described in figure 2b as a function of frequency over the low-frequency band for beams 
steered in the look-directions 6t = 140° and &i = 170°, respectively.  As done in the previous 

examples, the beamformer output spectra are plotted for optimum, uniform, and cosine-tapered 

weights where the weights sum to unity. For the array in figure 2b, the cosine-tapered weights 

are given as 

wm = b cos 3( 6m ~ -g- 
XW<dm<%'   m=l,2,...,ll, (16) 

where the normalization constant b is chosen so that the weights sum to unity. The plots in 

figures 11a and 1 lb show that the optimum weights produce a reduction in the beamformer 

output spectrum across much of the frequency band of interest. Table 1 shows that the optimum 

weights produce a SNR improvement between one and two orders of magnitude over the 

uniform weights. In contrast, figures 11a and 1 lb show that the cosine-tapered weights produce 

a beamformer output spectrum that resembles the spectrum produced by the optimum weights. 

This resemblance is attributed to the optimum weight distributions in figures 10a and 10b being 

tapered and somewhat symmetric with a maximum at or near the center element. An indication 

of this close agreement for the cosine-tapered weights is shown in table 1 where the 

improvement in SNR is only a little more than 2 dB. 

Figure 12 is a plot of the optimum weight distribution for the line array in figure 2b with 

elements 8 and 9 missing and the beam steered at the look angle 0t = 140°. A comparison of 

figures 10a and 12 shows that the weights for elements 1 to 5 have increased at the expense of 

decreased values for the remaining elements. (Although element 10 exists in this example, its 

weight is zero.) It should be mentioned that the maximum weight in figure 12, w5, equals 0.207 

and exceeds the maximum value allowed in the plot. Figure 13 presents plots of the noise-only 

beamformer output spectra for the array described in figure 12 for the optimum, uniform, and 

cosine-tapered weight distributions. The plots show that the optimum weights produce a more 

noticeable reduction in the beamformer output spectrum than for the array without the missing 

elements in figure 11a. This observation is validated in table 1, which shows that the optimum 

weights produce SNR improvements of 18.5 dB and 12.6 dB over the uniform and cosine- 

tapered distributions, respectively. The increase in SNR improvement with respect to the cosine- 

tapered weights is attributed to the optimum weight distribution in figure 12 being less tapered 

and off-centered than the corresponding weight distribution in figure 10a. 
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4.2 EXAMPLES FOR HIGH-FREQUENCY BAND (1723 Hz </< 3446 Hz) 

Consider again the 11-element line array centered at 0= 180° as described in figure 2a. 

With a time-harmonic point force located at 0= 0°, the resulting transfer function magnitude 

plots as a function of frequency across the high-frequency band at the locations of elements 1 to 

3 and elements 4 to 6 are shown in figures 14a and 14b, respectively. Because the transfer 

function is axisymmetric for a point source located at 6- 0°, the transfer functions for elements 

7 to 11 are not plotted. The plots show that the transfer function at the center element (no. 6) is 

noticeably larger than at the other element locations over the entire frequency band. (It should 

be noted that a similar observation was made for the low-frequency band case.) 

Figures 15a and 15b are bar graphs of the optimum weight distributions for the line array 

in figure 2a for beams steered at the look angles Bl = 180° and 6l = 150°, respectively. The 

optimum weight distribution in figure 15a is somewhat flat, with maxima at elements 5 and 7. 

In contrast, the weight distribution in figure 15b is irregular, with a maximum at element 11. 

Comparisons of figures 15a and 15b with their low-frequency counterparts in figures 5a and 5b, 

respectively, indicate no resemblance. 

Figures 16a and 16b are plots of the noise-only beamformer output spectra for the 

optimum, uniform, and cosine-tapered weights corresponding to the arrays described in figures 

15a and 15b, respectively. In each figure, the beamformer output spectrum for the optimum 

weights is considerably smaller than that for the uniform and cosine-tapered weights. Because 

the optimum weight distribution in figure 15a is relatively flat, it is no surprise that the 

beamformer output spectrum for the uniform weights in figure 16a is noticeably smaller than that 

for the cosine-tapered weights. The graphs in figure 16b show that the beamformer output 

spectrum for the optimum weight distribution is well below the output spectra for the other 

weights than in figure 16a. This difference is attributed to the highly irregular optimum weight 

distribution illustrated in figure 15b. 
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Table 2 gives the objective functions for the optimum, uniform, and cosine-tapered 

weights and the SNR improvements with respect to the uniform and cosine-tapered weights for 

the high-frequency band examples presented. The results show that, for the array in figure 2a, 

the optimum weights produce SNR improvements of 11.5 dB and 17.2 dB over the uniform and 

cosine-tapered distributions, respectively, when the beam-steering angle is 0{ = 180°. These 

SNR improvements increase by more than 10 dB when the beam-steering angle is 0t = 150°. 

This increase is attributed to the irregular optimum weight distribution shown in figure 15b. 

Table 2. Objective Function F(w)for Several Weight Distributions and SNR 
Improvements (ASNR) in the High-Frequency Band Examples 

Array 
Beam Steering 

Angle (deg) 
Weight 

Distribution 
Objective 
Function ASNR (dB) 

Figure 2a 180 Optimum 3.646 x 104 - 

Uniform 5.112xl05 11.5 
Cosine Taper 1.935 xlO6 17.2 

Figure 2a 150 Optimum 3.741 x 104 - 

Uniform 5.793 x 106 21.9 
Cosine Taper 3.578 x 107 29.8 

Figure 2b 140 Optimum 2.830 x 103 - 

Uniform 4.006 x 104 11.5 
Cosine Taper 1.991 xlO4 8.47 

Figure 2b 170 Optimum 9.714 xlO3 - 

Uniform 5.535 x 104 7.56 
Cosine Taper 3.270 x 104 5.27 

Figures 17a and 17b are bar graphs of the optimum weight distributions for the array 

described in figure 2b with beam-steering angles of 0t = 140° and 0[ = 170°, respectively. The 

weight distribution in figure 17a is tapered with a maximum value at element 4; the distribution 

in figure 17b is irregular with a maximum at element 2. Comparison of figures 17a and 17b with 

the low frequency-bar graphs in figures 10a and 10b indicate that both optimum distributions are 

tapered when the beam-steering angle is 0l = 140°, but exhibit no resemblance when 6l = 170°. 
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Figures 18a and 18b are plots of the noise-only beamformer output spectra for the 

optimum, uniform, and cosine-tapered weights corresponding to the arrays described in figures 

17a and 17b, respectively. As discovered in each of the previous examples, the beamformer 

output spectrum for the optimum weights is below the spectra for the uniform and cosine-tapered 

spectra over much of the frequency band of interest. Table 2 shows that for the array depicted in 

figure 2b the optimum weights produce SNR improvements of 11.5 dB and 8.47 dB over the 

uniform and cosine-tapered distributions, respectively when the beam-steering angle is 0[ = 140°. 

The SNR improvements are 3 to 4 dB less when the beam-steering angle is 6l = 170°. 

A comparison of the results listed in tables 1 and 2 gives some indication of the effect of 

element spacing on the optimization results. The reader should recall that the element spacing s 

between elements is 0.036^, <s< 0.145 A over the low-frequency band and Al A < s < All over the 

high-frequency band. For the array centered at 6= 180° (figure 2a), the SNR improvements in 

the low-frequency band examples are greater than in the corresponding high-frequency band 

examples. This observation is somewhat surprising considering that the transfer functions at 

each element location are comparable in magnitude across their respective frequency bands. The 

expression for the noise-only beamformer output spectrum V(f) in equation (8) indicates that the 

differences in these results are most likely attributed to phase differences in the element transfer 

functions and in the exponential term in equation (8). For the array centered at 6= 140° (figure 

2b), the SNR improvements, with respect to uniform weights, are greater in the low-frequency 

band examples. However, the high-frequency band examples produce larger SNR improvements 

with respect to cosine-tapered weights. 
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5. CONCLUSIONS 

The results presented in this report have shown that the optimal broadband array design 

procedure developed by Streit and Wettergren produces a significant improvement in the SNR at 

the output of a square-law detector when compared with several conventional array weight 

distributions. These results indicate that this approach shows considerable promise in future 

submarine acoustic hull array design. In order to apply the optimal broadband array design 

procedure, the power spectra of the noise sources must be known at a sufficient number of 

discrete frequencies across the band of interest. These discrete frequencies do not need to be 

equally spaced. In the examples presented here, the noise spectra are assumed to be flat across 

the frequency band of interest. The noise power spectra can be obtained either from 

measurements or from a structural acoustic analysis of a submarine hull. 

Each of the examples presented in this report involved an 11-element line array lying 

along the surface of a 15-ft-diameter, air-filled, fluid-loaded spherical shell. The spherical 

geometry permitted the application of analytical formulas for the transfer functions that relate a 

point-force excitation at one point on the sphere to the resulting surface pressure observed by a 

hydrophone at another point on the sphere. The computation times required to generate the 

optimization results presented in these examples were generally no more than 30 s on the NUWC 

Silicon Graphics Onyx 2 Computer. The computation times are expected to increase as a result 

of the following: (1) the number of array elements increase; (2) the number of discrete noise 

sources increase; (3) the discrete sources are replaced by continuous ones. 

In the upcoming applications planned for the optimal broadband array design procedure, 

the air-filled, fluid-loaded spherical shell will be replaced by a larger sphere that is fluid filled. 

This example will help to simulate an array conformal to a submarine sonar dome. In addition, 

examples involving a continuous noise source and several closely spaced line arrays are planned. 
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APPENDIX A 
DEVELOPMENT OF THE OBJECTIVE FUNCTION AND ITS GRADffiNT 

FOR USE IN THE OPTIMIZATION ALGORITHM 

The objective function and corresponding gradient for the optimum hull array design 

have been derived by Streit and Wettergren (reference 4). In this appendix, the objective 

function and corresponding gradient of Streit and Wettergren are revised for use in the 

optimization algorithm. 

Consider K > 1 point-force excitations 

«i0; ?i> Ci X <%(*; i2> t2 )> •••' <%('; Qk> tk) 

at hull locations specified by the position vectors qlf q2,... q^, oriented along the directions 

specified by the unit vectors £j, £2,..., t,k and with power spectra N^oi), N2(oi),..., Ng(6)), 

respectively. If the excitations are statistically independent, then the beamformer output 

spectrum is given by 

k=l 

K 

2 
M 

wm H( - ico; pm, qk, Q exp ICO 
Pm'il (A-l) 

where cois the angular frequency, w = [wv w2, —, wM]  is the column vector of element weights, 

pm is the position vector of element m, c is the speed of sound, f l is the unit vector in the beam 

look direction, and H(-icff, pm, qk, t,k) is the transfer function (spectral Green's function) relating a 

point force located at qk and oriented along the t,k -direction with the response measured atpOT. 

Note that (pm- |; )/c is the time delay for hydrophone m for a plane wave arrival from direction f f. 

Consider a hull array that is designed to maximize the deflection coefficient for the beam 

steered in the look direction |;. In this case, the only array design parameters are the element 

weights w. Under the assumptions that (1) |; is exactly the signal arrival direction, (2) the 

acoustic signal excites only the hydrophones and not the hull, and (3) the individual hydrophone 

acoustic beam patterns are omnidirectional with flat spectral response, Streit and Wettergren 

(reference 4) have shown that the optimum deflection coefficient is found by solving the 

following minimization problem: 
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I ™*u FoW =   m^        V;(to; *>, £,) </«>, (A-2) 

2 w,„ = 1. (A-3) 

subject to the linear equality constraint 

M 

I 
m=\ 

and the non-negative constraint on the hydrophone weights 

wm>0 , m=l,2,...,M. (A-4) 

In equation (A-2), V0 is the beamformer output given in equation (A-l) and B denotes the 

specified array bandwidth. 

To obtain optimization results for the problem described in equations (A-2) to (A-4), some 

simplification of the objective function F0(w) is required. Because the autocorrelation functions of 

the ^-excitation waveforms and corresponding beamformer outputs are real and even functions of 

time, the beamformer output spectrum is a real and even function of «(reference 13). In addition, 

it is more convenient to convert from the angular frequency a) to the frequency /in Hertz through 

the relation/= coHn. With the substitution of the above into equation (A-2), the objective 

function simplifies to 

Jo 

' Jmax 

F(W) = 4KI        V2(f;m,it)df, (A.5) 

wherefmax = Blliz, and the beamformer output spectrum Vis equivalent to V0 in equation (A-l) 

with «replaced by 2/tf. Because the array processor also includes a filter that removes the 
lowest frequencies over the band 0 <f<fmin, the limits of integration in equation (A-5) extend 

over the interval (fmi„,fmax)- The factor of An in the objective function has no effect on the 

determination of the optimum array weights. Thus, equation (A-5) reduces to 

/,: 

'■/max 

F(K)=| V2(/; *.!/)#■ (A-6) 

Therefore, the single-beam design optimization problem is 
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min F(w), 
*ERM 

(A-7) 

with constraints given by equations (A-3) and (A-4), where the objective function F(w) is given 

by equation (A-6). It should be noted that the optimization problem as described by equation 

(A-7) with equations (A-3) and (A-4) is equivalent to the original optimization problem as 

described by equation (A-2) with (A-3) and (A-4). 

The computation of the gradient of the objective function and its constraints are 

necessary in the determination of the optimum array weights w. The gradient of the objective 

function in equation (A-6) with respect to the array weights is given by 

VKF(MO 

•'/mi 

1£ 
V2(f;w,^)   df = 

Jr4 
V(/;Ä,i/)VÄV(/;K,|prf/,       (A-8) 

where the gradient operator Vw is defined by 

d       d d 
öWJ'  dw2'      '  dwM 

(A-9) 

For convenience, the following complex-valued auxiliary function is defined as 

M 

2 <p(f- w, £ q,0 = Zu w»i H(f>Pm><l>D e^P 
m=\ 

■ 2nf 
[Pm ■ I) (A-10) 

The beamformer output spectrum V given in equation (A-l) with «replaced by 27tf can be 

expressed in terms of the auxiliary function <p as 

K 

2 <P(/;iü,|;,^, tk) 

2 
k=i 

Nk(J) ¥J\ if, I;, qk, Kk) (p*(f; w, i/, qk, Q - (A-ll) 

where * denotes the complex conjugate. Therefore, the gradient of the beamformer output 

spectrum is 
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K 

2 q*f; l£, f,, ^, £*) </?*(/; w, f/, ?*, C*) 

A: 

Nk(f) Re    #/; w, f,, <?„ Q Vtf  v*(/; ä, I/, 9,, £*) (A-12) 

The nth component of the gradient of V is 

dV(f; *>,%[) 
d\v„ 2 

k=\ 

Nk(f)Re icpif-^^q,,^) d<p*(f;*,§pqk,£k) 
dw.. 

K 

2 2 Zd N*if) Re i ^(/; *' ^ **• £*> H*( f> P* **> Q exp 
2m/ 

('" • £) .     (A-13) 

From equations (A-8) and (A-13), the nth component of the gradient of the objective function 
F(w) is 

dF(nQ 
fVmax 

= 4 2 
A = I 

#*( /; /v qk, tk) exp 
.231/ 

rf/- (A-14) 

Expressions (A-6) and (A-14) for the objective function and the nth component of its 

gradient, respectively, are used in the optimization algorithm. These expressions are computed 
via numerical integration through utilization of the overlapping parabolas rule. 
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APPENDIX B 

OVERLAPPING PARABOLAS INTEGRATION RULE 

B.l THEORETICAL DEVELOPMENT 

rb 
Consider the integral I   y{x) dx, where y(x) has been tabulated at unequally spaced 

Ja 
abscissas. Let the abscissas be a = xx < x2 < x3 < ... < xN = b and let 

P„(x) = anx
2 + bnx + cn ,  n = 2,3,...,N-l (B-l) 

be the quadratic polynomial that interpolates to y(x) at xnA, xn, and xn+l. An illustration of the 

quadratic interpolation polynomials is given in figure B-l. The integration interval (a,b) is 

subdivided into N subintervals (xn, xn+1), where y(x) is represented as 

PJx),   X, <, X <, x^ 

y(x) ~   I ^W + ^ + iW  > x
n*

x*x„+i> n = 2,3,...,N-2 

*N - \\X> ■>   XN - 1 ^ X S Xl\ 

Note that no smoothing is done over the first and last intervals. 

P,(x) 

P1+1M 

Figure B-l. Overlapping Parabolas Integration Rule 

(B-2) 
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The quadratic polynomial Pn(x) can be expressed as follows: 

P„M = aH(x-xn_l)
2 + ßn{x-xn_l) + yn_l , (B-3) 

where 

«.. = (•*» - x„ -1) (y„+1 - y„ -1) - (*„+1 - *n -1) (.v>, - y» -1) 
(^,-*„-l)(*,I+l-*H-l) (■*„+!-*„) 

(B-4) 

and 

0  = (^ +1 - -y„ _ ])2 (v„ - v„ _ i) - (-y„ - -y„ _ !)2 (v„ +! - y/f _ ^ 
(B-5) 

In the above expressions, yn = y(xn). With the approximations in equation (B-2) for y(x) over the 

various subintervals, the integral of y(x) over (a,b) is given by 

N-2 

( y(x) dx * p P2(x) dx +iV [W + p„ + i Wl ^ + f"  ^_ i W d*.   (B-6) 
^ Jx* ~7^2   Jx 

L J ^A'-. 

The above integrals can be evaluated in closed form as 

f*2P2(x)dx = J a2 (x - Xj)2 + ß2 (x - x{) + vj tfr 

(-v2--yi)3    fl   (*2
-*i) 

ün + ^2 ~^-Ö + .Vl (*2 " X0   ' (B-7) 

\^P^x)dx = [ a 
B(*-*„-l)2 + 0„(*-*„-i) + .VH-i dx 

= cc. (-*•„+1-*„-l)3   (*„--r„-l)3 

3 3 

+ .V,,-i(^, + i-Jr„), 

+ 0» 
(*H + i--TH-i)

2    Cv-5,_i): 

(B-8) 
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fx"+l 

J x„ 

(x-xn)2 + ßn + 1(x-xn) + yn dx 

_  „         (Xn + 1     Xr)      ,    R          (Xn +1     Xt)      ,   .,   (x Y x /R Q\ 

"  a»+ 1  3   + Pn+l  2        -V» (  »+ 1 "   »' ' ^       ' 

1 J      PN_1(x)dx= I       U^_1(x-^_2)2 + ^iV_1(x-^_2) + jN_2 rfx 

= a (XN     XN-2^~       (XN-1     XN-2^ 
iV-1 3 

+  ßN-l 
(XN     XN-2> (XN-l     XN-2>' + yN_2{xN-xN_1).{B-\0) 

The substitution of equation (B-7) through (B-10) into (B-6) gives 

L 
b   t  w (*2-*l)3      a    (^2-Xl)2 

yO) dx s a2 —   o   — + p2 —   9   — + Vj (x2 - Xj) 

N-2 

2 « = 2 

(•*»+!     -^H-l) (xn     Xn-iy + 0£ 
(^       , — X V 

«+1 3 

+  ßn 
(Xn+1     Xn-0        (Xn    Xn-\)' .    a (Xn+l~

Xn)2 

^ Pn+l 9 

+ (y„-i + yn)(xn+i-xn) 

+ a N-l 
(XN     XN-2> \XN-l     XN-2>~ 

+ ßN-l 
(XN     XN-2>^      (XN-\     XN-2^' 

+ yN-2(xN-xN-i)-       (B-11) 
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The above expression can be simplified to 

Ja 
y(x) dx s i a 

jx2-xl)
3 (x2-xl) 

2 3 
+ ß2 

+ 

N-2 

2 n = 2 
CX. 3 "1"/J« o 

+ a N-i 3 2 3 

+  £ W-l 
(XN    XN - 2>     _   1   (XN-l ~XN-2>' 

0 0 0 

N-3 

+ i \ >'i [(^3 - *i) + (x2 - xi)] + 2 -v» (■*„ + 2 - ■*„) 
n-2 

+ y ■}N-2 (XN~XN-0 + (XN~XN-2) (B-12) 

If the abscissas are equispaced, i.e., xn+1 -xn = A,n = l,2,..., N- 1, the above expression 

reduces to 

Ja 
y(x) dx s a2"r + ^2 — 2 

H = 2 

4A + A Zd K 3 +^< 

tf-3 

+ <*N-i^ + ßN-i2%- + % {3v1 + 2 2vn + 3.y„_2   - 
H = 2 

(B-13) 

where 

a = -Vw+] -yn + y„-i      o 3    jyi 

^,-y„„^4y„-3v„.1|)| = 23 ^ 
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B.2 APPLICATION TO NUMERICAL INTEGRATION OF OBJECTIVE FUNCTION 

Before the overlapping parabolas integration rule could be applied to the optimal 

broadband array design algorithm, it had to be validated through evaluation of various integrals 

for which analytical results exist. The validation examples included various types of integrands, 

e.g., ones that were fairly smooth, oscillatory, or with cusps at one of the endpoints. In each 

example, the overlapping parabolas integration rule produced results that were in agreement with 

the analytical results, and, in most cases, the integrals converged after a reasonable number of 

iterations. In the examples where unequally spaced abscissas were used, the overlapping 

parabolas integration rule also produced satisfactory results. 

As mentioned, the overlapping parabolas integration rule is to be applied in the 

evaluation of the objective function and its gradient at each iteration in the optimization 

algorithm. Before the optimization algorithm can be applied, it is necessary to know the number 

of frequency points required to obtain sufficiently accurate results for various weight 

distributions. This information is necessary because the optimization algorithm requires the 

transfer function at the array element locations before proceeding with the optimization 

calculations. In the present work, numerical convergence to seven or eight decimal places is 

considered adequate. 

Tables B-l through B-4 list the objective function evaluated by several integration rules 

for various numbers of equally-spaced frequency points for the line arrays described in figures 2a 

and 2b. Tables B-l and B-3 involve the low-frequency band (250 Hz </< 1000 Hz), and tables 

B-2 and B-4 involve the high-frequency band (1723 Hz </< 3446 Hz). In each table, the 

objective function was computed for a uniform weight distribution because it was determined to 

provide convergence results that are representative of other weight distributions. Results are 

compared for the trapezoidal, Simpson's, and overlapping parabolas integration rules. The 

trapezoidal rule requires linear interpolation between abscissas, in contrast to Simpson's and the 

overlapping parabolas integration rules, which require quadratic interpolation. Because a 

quadratic interpolation between abscissas involves a smaller truncation error than for linear 

interpolation, Simpson's and the overlapping parabolas integration rules generally converge 

faster than the trapezoidal rule. 

Tables B-l and B-2 list the objective function evaluated for various numbers of frequency 

points across the low- and high-frequency bands, respectively, for the line array in figure 2a with a 

beam-steering angle of $t = 180°. In table B-l, the objective function converges to eight decimal 
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places for 1000 frequency points with the overlapping parabolas rule and for between 2000 and 

3000 frequency points with Simpson's rule. In contrast, with the trapezoidal rule, the objective 

function converges to only six decimal places for 3000 frequency points and appears to converge 

to seven places for 6000 frequency points. Table B-2 indicates that the objective function 

converges to eight decimal places for 1000 frequency points with the overlapping parabolas rule 

and for 2000 frequency points with Simpson's rule. In contrast, table B-2 indicates that with the 

trapezoidal rule the objective function converges to six decimal places with 2000 frequency points 

and again appears to converge to seven places for 6000 frequency points. Therefore, tables B-l 

and B-2 indicate that the overlapping parabolas integration rule requires no more than 1000 

frequency points to compute the objective function with eight decimal place accuracy. 

Tables B-3 and B-4 list the objective function evaluated for various numbers of frequency 

points across the low- and high-frequency bands, respectively for the line array described in 
figure 2b with a beam-steering angle 0t = 140°. In table B-3, the objective function converges 

to seven decimal places for between 1000 and 2000 frequency points and converges to eight 

decimal places for between 3000 and 4000 frequency points with the overlapping parabolas rule. 

Table B-3 also shows that the objective function converges to eight decimal places for between 

2000 and 3000 frequency points with Simpson's rule. In contrast, with the trapezoidal rule, the 

objective function doesn't show convergence to even six decimal places with 6000 frequency 

points. Table B-4 indicates that the objective function converges to eight decimal places for 

between 500 and 1000 frequency points with the overlapping parabolas rule and for 500 

frequency points with Simpson's rule. The data in table B-4 show that with the trapezoidal rule 

the objective function converges to eight decimal places for between 3000 and 4000 frequency 

points. In summary, tables B-3 and B-4 show that the overlapping parabolas integration rule 

requires between 1000 and 2000 frequency points to compute the objective function with seven 

decimal place accuracy. 

As a result of the convergence tests of the objective functions, it was determined that 

approximately 1000 to 2000 frequency points are sufficient for seven to eight decimal place 

accuracy with the overlapping parabolas integration rule. Similar convergence tests for the 

gradient terms (not shown here) have also been performed with similar convergence results as 

the objective function. It should also be mentioned that all computations performed in this report 

involve double-precision accuracy (i.e., 15 decimal places). In each of the examples described in 

this report, the optimization results were obtained with at least 2000 frequency points. 
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Table B-l. Convergence Test of the Objective Function with Several Numerical Integration 
Procedures for the Line Array in Figure 2a in the Low-Frequency 

Band (250 Hz <f<1000 Hz) with Uniform Weights and a 
Beam Steered at the Look Angle Ot = 180° 

No. of Frequency 
Points 

Overlapping 
Parabolas Rule Trapezoidal Rule Simpson's Rule 

100 2.6294267 x 1010 2.6296756 x 1010 2.6265587 x 1010 

250 2.6293594 x 1010 2.6294086 x 1010 2.6293237 x 1010 

500 2.6293547 x 1010 2.6293679 x 1010 2.6293508 x 1010 

1000 2.6293543 x 1010 2.6293577 x 1010 2.6293539 x 1010 

2000 2.6293543 x 1010 2.6293551 x 1010 2.6293542 x 1010 

3000 2.6293543 x 1010 2.6293547 x 1010 2.6293543 x 1010 

4000 2.6293543 x 1010 2.6293545 x 1010 2.6293543 x 1010 

6000 2.6293543 x 1010 2.6293543 x 1010 2.6293543 x 1010 

Table B-2. Convergence Test of the Objective Function with Several Numerical Integration 
Procedures for the Line Array in Figure 2a in the High-Frequency 

Band (1723 Hz <f <3446 Hz) with Uniform Weights and a 
Beam Steered at the Look Angle 6{ = 180° 

No. of Frequency 
Points 

Overlapping 
Parabolas Rule Trapezoidal Rule Simpson's Rule 

100 7.4848970 x109 7.4832128 x 109 7.4848169x109 

250 7.4843096 x109 7.4841299 x 109 7.4843449 x109 

500 7.4843014 x109 7.4842584 x 109 7.4843065 x109 

1000 7.4843010 x 109 7.4842904 x 109 7.4843017 x109 

2000 7.4843010 x 109 7.4842983 x 109 7.4843010 x109 

3000 7.4843010 x109 7.4842998 x 109 7.4843010 x109 

4000 7.4843010 x 109 7.4843003 x 109 7.4843010 x 109 

6000 7.4843010 x 109 7.4843007 x 109 7.4843010 x 109 
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Table B-3. Convergence Test of the Objective Function with Several Numerical Integration 
Procedures for the Line Array in Figure 2b in the Low-Frequency 

Band (250 Hz <f<1000 Hz) with Uniform Weights and a 
Beam Steered at the Look Angle 6l = 140° 

No. of Frequency 
Points 

Overlapping 
Parabolas Rule Trapezoidal Rule Simpson's Rule 

100 9.6152579 x 107 9.6340542 x107 9.6011845 xlO7 

250 9.6455449 x 107 9.6442003 x 107 9.6469275 x 107 

500 9.6465930 x 107 9.6460253 x107 9.6466297 x 107 

1000 9.6466205 x 107 9.6464721x107 9.6466206 x 107 

2000 9.6466201 x 107 9.6465831x107 9.6466201 x 107 

3000 9.6466201 x 107 9.6466036 x 107 9.6466200 x 107 

4000 9.6466200 x 107 9.6466108 x 107 9.6466200 x 107 

6000 9.6466200 x 107 9.6466159 x107 9.6466200 x 107 

Table B-4. Convergence Test of the Objective Function with Several Numerical Integration 
Procedures for the Line Array in Figure 2b in the High-Frequency 

Band (1723 Hz <f<3446Hz) with Uniform Weights and a 
Beam Steered at the Look Angle &t = 140° 

No. of Frequency 
Points 

Overlapping 
Parabolas Rule Trapezoidal Rule Simpson's Rule 

100 8.9649025 x 108 8.9648170 xlO8 8.9649436 x 108 

250 8.9649006 x 108 8.9648870 x108 8.9649011 xlO8 

500 8.9649001 x 108 8.9648868 x 108 8.9649000 x 108 

1000 8.9649000 x 108 8.9648990 x 108 8.9649000 x 108 

2000 8.9649000 x 108 8.9648998 x108 8.9649000 x 108 

3000 8.9649000 x 108 8.9648999 x108 8.9649000 x 108 

4000 8.9649000 x 108 8.9649000 x 108 8.9649000 x 108 

6000 8.9649000 x 108 8.9649000 x 108 8.9649000 x 108 
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